
A Semantics-based Approach
to Malware Detection
Mila Dalla Preda – University of Verona, Italy

Mihai Christodorescu, Somesh Jha – University of Wisconsin, USA
Saumya Debray – University of Arizona, USA

17-19 Jan, POPL’07, Nice

A Semantics-based Approach to Malware Detection – p.1

A Few Basic Definitions

Malware represents malicious software.

Malware detector is a program D that determines whether another program P

is infected with a malware M.

D(P, M) =

{
True if D determines that P is infected with M

False otherwise

A Semantics-based Approach to Malware Detection – p.2

A Few Basic Definitions

Malware represents malicious software.

Malware detector is a program D that determines whether another program P

is infected with a malware M.

D(P, M) =

{
True if D determines that P is infected with M

False otherwise

An ideal malware detector detects all and only the programs infected with M,
i.e., it is sound and complete.

Sound = no false positives (no false alarms)

Complete = no false negatives (no missed alarms)

A Semantics-based Approach to Malware Detection – p.2

Malware Trends

There is more malware every year.

445

10992

New Malware

2002 2003 2004 2005

A Semantics-based Approach to Malware Detection – p.3

Malware Trends

There is more malware every year.

445

10992

141 101

New Malware

New Malware Families

2002 2003 2004 2005

But the number of malware families has almost no variation.

Beagle family has 197 variants (as of Nov. 30).
Warezov family has 218 variants (as on Nov. 27).

A Semantics-based Approach to Malware Detection – p.3

The Malware Threat

Current detectors are signature-based:

P matches byte-signature sig ⇒ P is infected

Signature-based detectors, when sound, are not complete.

Malware writers use obfuscation to evade current detectors.

A Semantics-based Approach to Malware Detection – p.4

The Malware Threat

Current detectors are signature-based:

P matches byte-signature sig ⇒ P is infected

Signature-based detectors, when sound, are not complete.

Malware writers use obfuscation to evade current detectors.

Virus–antivirus “coevolution”

1. Malware writers create new, undetected malware.

2. Antimalware tools are updated to catch the new malware.

3. Repeat...

A Semantics-based Approach to Malware Detection – p.4

Common Obfuscations

Nop insertion

Register renaming

Junk insertion

Code reordering

Encryption

Reordering of independent statements

Reversing of branch conditions

Equivalent instruction substitution

Opaque predicate insertion

... and many others...

A Semantics-based Approach to Malware Detection – p.5

Common Obfuscations

Nop insertion

Register renaming

Junk insertion

Code reordering

Encryption

Reordering of independent statements

Reversing of branch conditions

Equivalent instruction substitution

Opaque predicate insertion

... and many others...

A Semantics-based Approach to Malware Detection – p.5

Obfuscation Example

(Pseudo-)Code:

mov eax, [edx+0Ch]

push ebx

push [eax]

call ReleaseLock

A Semantics-based Approach to Malware Detection – p.6

Obfuscation Example

(Pseudo-)Code:

mov eax, [edx+0Ch]

push ebx

push [eax]

call ReleaseLock

Obfuscated code (junk):

mov eax, [edx+0Ch]

inc eax

push ebx

dec eax

push [eax]

call ReleaseLock

A Semantics-based Approach to Malware Detection – p.6

Obfuscation Example

(Pseudo-)Code:

mov eax, [edx+0Ch]

push ebx

push [eax]

call ReleaseLock

Obfuscated code (junk + reordering):

mov eax, [edx+0Ch]

jmp +3

push ebx

dec eax

jmp +4

inc eax

jmp -3

call ReleaseLock

jmp +2

push [eax]

jmp -2

A Semantics-based Approach to Malware Detection – p.6

Solutions?

Recent developments based on deep static analysis:

Detecting Malicious Code by Model Checking [Kinder et al. 2005]

Semantics-Aware Malware Detection [Christodorescu et al. 2005]

Behavior-based Spyware Detection [Kirda et al. 2006]

A Semantics-based Approach to Malware Detection – p.7

Solutions?

Recent developments based on deep static analysis:

Detecting Malicious Code by Model Checking [Kinder et al. 2005]

Semantics-Aware Malware Detection [Christodorescu et al. 2005]

Behavior-based Spyware Detection [Kirda et al. 2006]

Lack of a formal framework for assessing these techniques.

A Semantics-based Approach to Malware Detection – p.7

Our Contributions

Challenges:

Many different obfuscations

Obfuscations are usually combined

Detection schemes usually rely on static/dynamic analyses

A Semantics-based Approach to Malware Detection – p.8

Our Contributions

Challenges:

Many different obfuscations

Obfuscations are usually combined

Detection schemes usually rely on static/dynamic analyses

A framework for assessing the resilience to obfuscation of malware detectors.

Obfuscation as transformation of trace semantics

Malware detection as abstract interpretation of trace semantics

Composing obfuscations vs. composing detectors

A Semantics-based Approach to Malware Detection – p.8

Two Worlds of Malware Detectors

Malware detector
on finite semantic structure

Disassembler

CFG construction

Other analyses

A Semantics-based Approach to Malware Detection – p.9

Two Worlds of Malware Detectors

Malware detector
on finite semantic structure

Disassembler

CFG construction

Other analyses

Malware detector
on trace semantics

A Semantics-based Approach to Malware Detection – p.9

Two Worlds of Malware Detectors

Malware detector
on finite semantic structure

Disassembler

CFG construction

Other analyses

Malware detector
on trace semantics

A Semantics-based Approach to Malware Detection – p.9

Abstract Interpretation

Design approximate semantics of programs [Cousot & Cousot ’77, ’79].

α

γ

> >

α(c)γ(α(c))

c

⊥

C

⊥

A

Galois Connection: 〈C, α, γ, A〉, A and C are complete lattices.

〈Abs(C),v〉 set of all possible abstract domains,

A1 v A2 if A1 is more concrete than A2

A Semantics-based Approach to Malware Detection – p.10

Outline

Semantic Malware Detector

Soundness and Completeness

Classifying Obfuscations

Composing Obfuscations

Proving Soundness and Completeness

A Semantics-based Approach to Malware Detection – p.11

Semantic Malware Detector

A program P is infected by malware M, denoted M ↪→ P

if (a part) of P execution is similar to that of M:

A Semantics-based Approach to Malware Detection – p.12

Semantic Malware Detector

A program P is infected by malware M, denoted M ↪→ P

if (a part) of P execution is similar to that of M:

∃ restriction r : S[[M]]) ⊆ αr(S[[P]])

A Semantics-based Approach to Malware Detection – p.12

Semantic Malware Detector

A program P is infected by malware M, denoted M ↪→ P

if (a part) of P execution is similar to that of M:

∃ restriction r : S[[M]] ⊆ αr(S[[P]])

αr

malware trace

program trace

A Semantics-based Approach to Malware Detection – p.12

Semantic Malware Detector

A program P is infected by malware M, denoted M ↪→ P

if (a part) of P execution is similar to that of M:

∃ restriction r : S[[M]] ⊆ αr(S[[P]])

αr

malware trace

program trace

Vanilla Malware i.e. not obfuscated malware

A Semantics-based Approach to Malware Detection – p.12

Obfuscated Malware

O : P → P obfuscating transformation

α : Sem → A abstraction that discards the details changed by the
obfuscation while preserving maliciousness

∃ restriction r : α (S[[M]]) ⊆ α (αr(S[[P]]))

A Semantics-based Approach to Malware Detection – p.13

Obfuscated Malware

O : P → P obfuscating transformation

α : Sem → A abstraction that discards the details changed by the
obfuscation while preserving maliciousness

∃ restriction r : α (S[[M]]) ⊆ α (αr(S[[P]]))

α

αr

malware trace

program trace

obfuscated malware trace
α

A Semantics-based Approach to Malware Detection – p.13

Sound vs. Complete

Precision of the Semantic Malware Detector (SMD) depends on α

A Semantics-based Approach to Malware Detection – p.14

Sound vs. Complete

Precision of the Semantic Malware Detector (SMD) depends on α

A SMD on α is complete w.r.t. a set O of transformations if ∀O ∈ O:

O(M) ↪→ P ⇒

{
∃ restriction r :

α(S[[M]]) ⊆ α(αr(S[[P]]))

always detects programs that are infected (no false negatives)

A Semantics-based Approach to Malware Detection – p.14

Sound vs. Complete

Precision of the Semantic Malware Detector (SMD) depends on α

A SMD on α is complete w.r.t. a set O of transformations if ∀O ∈ O:

O(M) ↪→ P ⇒

{
∃ restriction r :

α(S[[M]]) ⊆ α(αr(S[[P]]))

always detects programs that are infected (no false negatives)

If α is preserved by O then the SMD on α is complete w.r.t. O.

A Semantics-based Approach to Malware Detection – p.14

Sound vs. Complete

Precision of the Semantic Malware Detector (SMD) depends on α

A SMD on α is sound w.r.t. a set O of transformations if:

∃ restriction r :

α(S[[M]]) ⊆ α(αr(S[[P]]))

}

⇒ ∃O ∈ O : O(M) ↪→ P

never erroneously claims a program is infected (no false positives)

A Semantics-based Approach to Malware Detection – p.14

Outline

Semantic Malware Detector

Soundness and Completeness

Classifying Obfuscations

Composing Obfuscations

Proving Soundness and Completeness

A Semantics-based Approach to Malware Detection – p.15

Classifying Obfuscations

O : P → P is a conservative obfuscation if

∀ trace1 ∈ S[[P]], ∃ trace2 ∈ S[[O[[P]]]]: trace1 is sub-sequence of trace2

program trace

program trace
1 2 3 4

1 2 3 4

obfuscated

A Semantics-based Approach to Malware Detection – p.16

Conservative Obfuscations

Abstraction αc handles conservative obfuscations:

αc[X](Y) = X ∩ SubSequences(Y)

The SMD on αc is sound and complete w.r.t. conservative obfuscations

A Semantics-based Approach to Malware Detection – p.17

Conservative Obfuscations

Abstraction αc handles conservative obfuscations:

αc[X](Y) = X ∩ SubSequences(Y)

The SMD on αc is sound and complete w.r.t. conservative obfuscations

αc(malwaretrace)(programtrace

21 3 4
malware trace

program trace
1 2 43

A Semantics-based Approach to Malware Detection – p.17

Conservative Obfuscations

Abstraction αc handles conservative obfuscations:

αc[X](Y) = X ∩ SubSequences(Y)

The SMD on αc is sound and complete w.r.t. conservative obfuscations

αc(malware trace)(program trace)

21 3 4
malware trace

1 2 3 4
program trace

A Semantics-based Approach to Malware Detection – p.17

Conservative Obfuscations

Abstraction αc handles conservative obfuscations:

αc[X](Y) = X ∩ SubSequences(Y)

The SMD on αc is sound and complete w.r.t. conservative obfuscations

Abstraction αc returns the set of malware traces
that are subsequences of some program trace

A Semantics-based Approach to Malware Detection – p.17

Classifying Common Obfuscations

Nop insertion

Register renaming

Junk insertion

Code reordering

Encryption

Reordering of independent statements

Reversing of branch conditions

Equivalent instruction substitution

Opaque predicate insertion

A Semantics-based Approach to Malware Detection – p.18

Conservative Obfuscation Example

(Pseudo-)Code:

mov eax, [edx+0Ch]

push ebx

push [eax]

call ReleaseLock

Obfuscated code (junk + reordering):

mov eax, [edx+0Ch]

jmp +3

push ebx

dec eax

jmp +4

inc eax

jmp -3

call ReleaseLock

jmp +2

push [eax]

jmp -2

A Semantics-based Approach to Malware Detection – p.19

Conservative Obfuscation Example

(Pseudo-)Code: Obfuscated code (junk + reordering):

A Semantics-based Approach to Malware Detection – p.20

Conservative Obfuscation Example

(Pseudo-)Code: Obfuscated code (junk + reordering):

A Semantics-based Approach to Malware Detection – p.20

Non-Conservative

Approach 1: Find a canonical transformation

A Semantics-based Approach to Malware Detection – p.21

Non-Conservative

Approach 1: Find a canonical transformation

(Pseudo-)Code:

mov eax, [edx+0Ch]

push ebx

push [eax]

call ReleaseLock

Obfuscated Code (Renaming):

mov edi, [eax+0Ch]

push ecx

push [edi]

call ReleaseLock

A Semantics-based Approach to Malware Detection – p.21

Non-Conservative

Approach 1: Find a canonical transformation

(Pseudo-)Code:

mov R1, [R2+0Ch]

push R3

push [R1]

call ReleaseLock

Obfuscated Code (Renaming):

mov R1, [R2+0Ch]

push R3

push [R1]

call ReleaseLock

A Semantics-based Approach to Malware Detection – p.21

Non-Conservative

Program infection: M ↪→ P if ∃ restriction r : S[[M]] ⊆ αr(S[[P]])

A Semantics-based Approach to Malware Detection – p.22

Non-Conservative

Program infection: M ↪→ P if ∃ restriction r : S[[M]] ⊆ αr(S[[P]])

Approach 2: Futher abstractions

Interesting Malware States: I ⊆ States[[M]]:

M ↪→ P if ∃r : αI (S[[M]]) ⊆ αI (αr(S[[P]]))

31 2 4

A Semantics-based Approach to Malware Detection – p.22

Non-Conservative

Program infection: M ↪→ P if ∃ restriction r : S[[M]] ⊆ αr(S[[P]])

Approach 2: Futher abstractions

Interesting Malware States: I ⊆ States[[M]]:

M ↪→ P if ∃r : αI (S[[M]]) ⊆ αI (αr(S[[P]]))

31 2 4

Interesting Malware Traces: X ⊆ S[[M]]

M ↪→ P if ∃r : X ⊆ αr(S[[P]])

A Semantics-based Approach to Malware Detection – p.22

Composition

Malware writers combine different obfuscations to avoid detection

The property of being conservative is preserved by composition
⇒ abstraction αc

Under certain assumptions we can handle the composition of
non-conservative obfuscations

A Semantics-based Approach to Malware Detection – p.23

Outline

Semantic Malware Detector

Soundness and Completeness

Classifying Obfuscations

Composing Obfuscations

Proving Soundness and Completeness

A Semantics-based Approach to Malware Detection – p.24

Proving Soundness/Completeness of MD

Identifying the class of obfuscators to which a malware detector is
resilient can be a complex and error-prone task.

Obfuscators and detectors can be expressed on executions traces.

A detector is resilient to an obfuscator if
it can “abstract away” the obfuscator’s effect on the program.

Case study: Semantics-Aware Malware Detection Algorithm proposed by
[Christodorescu et al. 2005].

Complete for code reordering

Complete for junk insertion

Complete for variable renaming

A Semantics-based Approach to Malware Detection – p.25

Conclusions

Malware detection as abstraction of program semantics
vs.
Obfuscation as transformation of program semantics

We can now determine:

Whether a detector is resilient to a set of obfuscations

How complex a detector has to be to handle a given obfuscation

Open Problems:

Can we handle some interesting classes of non-conservative
obfuscations?

How does one design a semantic detector based on trace semantics?

Connecting cryptographic and program analysis views of obfuscation

A Semantics-based Approach to Malware Detection – p.26

Thank you!

A Semantics-based Approach to Malware Detection – p.27

	
	A Few Basic Definitions
	Malware Trends
	The Malware Threat
	Common Obfuscations
	Obfuscation Example
	Solutions?
	Our Contributions
	Two Worlds of Malware Detectors
	Abstract Interpretation
	Outline
	Semantic Malware Detector
	Obfuscated Malware
	Sound vs. Complete
	Outline
	Classifying Obfuscations
	Conservative Obfuscations
	Classifying Common Obfuscations
	Conservative Obfuscation Example
	Conservative Obfuscation Example
	Non-Conservative
	Non-Conservative
	Composition
	Outline
	Proving Soundness/Completeness of MD
	Conclusions
	

